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Self-healing pulse solution in a continuum model of fracture propagation

Hiizu Nakanishi
Department of Physics, Kyushu University 33, Fukuoka 812-8581, Japan

~Received 23 July 1999!

An analytical solution that represents a self-healing pulse of slip is presented for a dynamical model of
fracture in a two-dimensional continuum medium. Even without the cohesive region, the solution does not
show a singular behavior in the stress at the resticking point unlike at the breaking point, where the stress is
diverging as 1/Ar . This means that the physical condition at the resticking point should depend on the
microscopic processes of resticking while the condition at the breaking point is known to be described by the
phenomenological fracture energy.

PACS number~s!: 46.50.1a, 62.20.Mk, 91.30.Bi
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It requires a large amount of work to slide a carpet on
floor by pulling one of its sides because the friction force
acting over the whole interface between the carpet and
floor. But, if one makes a bump at one side and pushe
through to the opposite side, the carpet can be shifted m
easier because only a small fraction of the carpet is mov
at a given time and the friction force to the bump is small.
more microscopic example that is familiar to physicists i
dislocation propagation; a crystal deforms by propagat
dislocations, thus it can be deformed much easier tha
would be expected if all the bonds would have to be shif
at the same time.

It has been realized that a similar thing is happening
much larger scale; An earthquake fault does not slip at o
in a big event, but it slides as a localized pulse of fract
propagates along the fault, and the fault surfaces stick
gether after the fracture front has passed. From the ana
of seismic data, it has been found that the length of slipp
region of the earthquake fault at a given moment within
event is much shorter than the total length of the fault bro
by the earthquake@1#. Simulations of a simple block-sprin
model also show that fracture fronts propagate as a nar
pulse in a big sliding event@3–5#.

On the other hand, theoretical study on fracture dynam
is largely limited to the fracture without healing and little
known about physical and mathematical properties of
pulse such as crack propagation with self-healing. There
been found a solution for a pulse propagation in a tw
dimensional continuum@2#, but the solution is not a dynami
but a kinematic one in the sense that its dynamical featu
such as the fracture speed and the pulse length are arb
and cannot be determined for a given physical situation
this paper, I will solve a dynamical model of fracture prop
gation and present a pulse solution of the mode III crack w
self-healing in a two-dimensional continuum.

The model I study here is the same with the one where
analytical solution without self-healing has been obtain
@6–8#. I consider only the out of plane component (z com-
ponent! of the displacement fieldu(x,y,t), which satisfies
the equation of motion

ü~x,y,t !5c0
2¹2u~x,y,t !2v0

2@u~x,y,t !2D# ~y.0!,
~1!
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wherec0 is the sound speed for the material,D is the exter-
nal displacement imposed at infinity (y→`), andv0 is the
angular frequency around it and represents the stiffnes
the externally imposed displacement; in the lower half pla
(y,0), we suppose that the external displacement is2D.
The crack is supposed to propagate along thex axis toward
the 2x direction. We assume the anti-symmetric situati
for the displacementu about thex axis and consider only the
upper half plane~Fig. 1!.

Suppose the crack tip is moving at the constant veloc
2v and its position is2vt, then the boundary condition
along thex axis is

m
]u

]y
uy505H s (2)~x! ~x,2vt !,

s (1)~x! ~x.2vt !,
~2!

u~x,y510!5H 0 ~x,2vt !,

U~x! ~x.2vt !,
~3!

wheres (1)(x) @s (2)(x)# is the stress along thex axis for
y.2vt (y,2vt), andU(x) is half of the crack opening;m
denotes the elastic modulus.

For convenience we define the width of the distorted
gion W, the strain«` , and the stresss` at the center line at
x52` by

W[
c0

v0
, «`[

D

W
, s`[m«` . ~4!

s` represents the stress imposed by the external distort
Now we transform the coordinate system into the mov

frame where the crack tip is located at the origin asx1vt

FIG. 1. Mode III fracture in the 2D elastic medium.
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→x, and look for the stationary solution by replacing]/]t
→v]/]x, then the equation of motion fory.0 becomes

c0
2F S 12

v2

c0
2D ]2

]x21
]2

]y2Gu~x,y!2v0
2@u~x,y!2D#50.

~5!

The solution with the appropriate boundary condition c
be expressed as@6,7#

u~x,y!5D~12e2y/W!1E dk

2p
Û (1)~k!e1 ikx2K̂(k)y ~6!

with

K̂~k![bAa21k2, a[
1

Wb
, b[A12v2/c0

2, ~7!

whereÛ (1)(k) is the Fourier transform ofU(x); the suffix
~1! denotes that all the singularities ofÛ (1)(k) are located
in the upper half plane becauseU(x)50 for x,0.

This can be solved explicitly forU(x) ands (2)(x). In the
a→0 limit, or the infinite system width limit, the solution
can be expressed in the simple form in the real space re
sentation@9#

U8~x!5
1

mb
PE

0

`dy

p
Ax

y

1

x2y
s (1)~y! for ~x.0!,

~8!

s (2)~x!5PE
0

`dy

p
A2x

y

1

y2x
s (1)~y! for ~x,0! ~9!

in terms of the stress behind the crack tips (1)(x); P* de-
notes the Cauchy principal value of the integral. The con
tion that the stress should not diverge at the crack tip
shown to be

1

Ap
E

0

`

dx
e2ax

Ax
@s (1)~x!2s`#50. ~10!

Note that the expression for the general case,aÞ0, is given
for this.

Now we look for a self-healing pulse solution. We assu
the crack surfaces restick atx5L, then the stress behind th
crack tips (1)(x) consists of two parts, namely, the slippin
stressssl(x) for 0,x,L, and the resticking stresssst(x) for
L,x. We assume the free traction condition for the slippi
stress except for the cohesive zone where the simple con
cohesive stresssy operates within the cohesive rangeU(x)
,d ~Fig. 2!

ssl~x!5sc@U~x!# for ~0,x,L ! ~11!

and

sc~U !5H sy ~0,U,d!,

0 ~U.d!.
~12!

If we denote the length of the cohesive regionl , then
n

re-

i-
is

e

ant

U~ l !5d ~13!

and

ssl~x!5H sy ~0,x,l !,

0 ~ l ,x,L !,
~14!

therefore Eq.~8! becomes

U8~x!5
1

mb
PE

0

l dy

p
Ax

y

1

x2y
sy

1
1

mb
PE

L

`dy

p
Ax

y

1

x2y
sst~y!. ~15!

Since the crack openingU(x) is constant in the resticking
region, Eq.~15! becomes zero forx.L:

05U08~x!1
1

mb
PE

L

`dy

p
Ax

y

1

x2y
sst~y! for ~x.L !,

~16!

where we have defined the crack openingU0(x) in the case
without resticking by

U08~x![
1

mb
PE

0

l dy

p
Ax

y

1

x2y
sy

5
sy

pmb
lnUAl 1Ax

Al 2Ax
U . ~17!

The singular integral equation~16! can be solved for
sst(x) ~see the Appendix and Ref.@10#! and then we obtain
the expressions forU8(x) and s (2)(x) from Eqs.~15! and
~9!, respectively,

sst~x!52mb PE
L

`dy

p

1

y2x
Ax

y
Ax2L

y2L
U08~y!

for ~x.L !, ~18!

U8~x!5U08~x!2E
L

`dy

p

1

y2x
Ax

y
AL2x

y2L
U08~y!

for ~0,x,L !, ~19!

FIG. 2. Simple model of the cohesive stress.
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s (2)~x!5s0
(2)~x!1mbE

L

`dy

p

1

y2x

3A2x

y
AL2x

y2L
U08~y! for ~x,0!, ~20!

wheres0
(2)(x) is the stress for the case without resticking

s0
(2)~x![

2

p
sytan21A l

2x
for ~x,0!. ~21!

Numerical estimate of Eqs.~18!–~21! are given in Fig. 3 for
l /L50.1. When the size of the cohesive zone is mu
smaller than the slipping region,l /L!1, these equations
can be approximated as

sst~x!5S 2

p
Al

L
syDAx2L

x
for ~x.L !, ~22!

U8~x!52
sy

pmb
Al

x S 12
x/L

11A12x/L
D for ~ l !x,L !,

~23!

s (2)~x!5
2

p
syF tan21A l

2x
1A l

2x
~A12x/L21!G

for ~x,0!. ~24!

These coincide to the ‘‘kinematic’’ analysis of stress for t
self-healing crack by Freund@2#.

The solution contains the three unknown paramet
namely,v, l , and L, and the one external parameters` ,
which is directly related withD by Eq. ~4!. For the physical
conditions to determine the parameters, we have the no
vergent condition of stress~10! and the matching condition
for the cohesive zone at the crack tip~13!. In the l /L!1
case, these conditions give

s`

sy
5

2

p
Al

L
, l 5

p

2
bm

d

sy
, ~25!

from which we have

L5
2

p
sybmd

1

s`
2 . ~26!

FIG. 3. U(x) and s(x) vs x for the casel /L50.1. U(x) is
given in the unit ofsy /mb ands(x) in the unit ofsy .
h

s,

di-

The total displacementD is given byU(L); in the l /L
!1 case, from the expression~23!, we have

D5
p

2

s`

mb
L, ~27!

and from Eq.~26!, this can be shown to satisfy the relatio

Ds`5syd[G. ~28!

This equation simply represents that the elastic energy
leased by the displacementD equals to the fracture energyG,
which implies the solution represents the fracture propag
ing without emitting any sound.

There are some points that need comments about this
lution.

~1! In the case of non-healing solution, the physical co
ditions to determine the parametersv and l are the nondi-
vergence condition at the crack tip and the matching con
tion at the end of the cohesive zone. The former condit
reduces to the energy criterion by Griffith@11#, i.e., the crack
criterion given by the simple phenomenological paramete
the fracture energy.

On the other hand, in the case of the self-healing pu
solution, the solution contains the additional parameter,
pulse lengthL. The additional condition should come from
the resticking condition. Difference from the condition at t
breaking point is that the solution does not have a str
divergence at the resticking point for anyL, therefore we
cannot impose the nondivergence condition there to de
mine it. This implies that the resticking condition cannot
expressed by a simple macroscopic quantities like the f
ture energy, but depends upon microscopic quantities suc
resticking stress or critical slipping speed for resticking.

~2! The solution is obtained in thea→0 limit, or the
infinite system width limit, therefore the situation repr
sented by the present solution is that the total displacemeD
is much smaller than the externally imposed displacemenD;
only negligible part of the total stress is released by the s
In real earthquakes, it has been estimated@1# that only rela-
tively small fraction (;10%) of stress is released althoug
there are substantial variations in the released stress from
earthquake event to another. On the other hand, in the s
lations for the spring-block system for the earthquake
namics, the system overshoots in the big events@3–5#. For
such cases, we need to solve Eq.~1! for the nonzeroa,
where the integral kernel in Eqs.~8! and~9! decay exponen-
tially for large ux2yu, but their actual form is not simple an
I am unable to extract any compact results.

~3! The present solution reduces to Freund’s one@2# in the
l /L!1 limit as is shown in Eqs.~22!–~24!, but the differ-
ence between the present treatment and Freund’s is tha
define the model as a dynamical one in the sense that
dynamical features can be determined for a given exte
physical condition;v, l , andL can be calculated as a func
tion of s` if a resticking condition is given. On the othe
hand, in Freund’s treatment, simply a kinematic solution
given for arbitrary values of parametersv, L, ands` , there-
fore the dynamical parameters cannot be determined fo
given physical situation.
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In summary, I obtained the analytic solution for the se
healing pulse of the crack propagation for the simple
namical model of fracture in a two-dimensional continuu
in the infinite width limit. In order to suppress the divergen
in the stress, the model needs the cohesive zone at the c
tip, but not at the resticking point. This implies the fractu
speed of the solution is determined by the microscopic
rameters of resticking condition, such as resticking stres
critical slipping speed for resticking.
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APPENDIX

I present the derivation of Eq.~18! from Eq. ~16! in this
appendix. Let us start by introducing the complex functi
F(z)

F~z![E
L

`dy

p

sst~y!/Ay

y2z
, ~A1!

which is regular except forz>L along the real axis if the
integral converges. Then we have

sst~x!

Ax
5

1

2i
@F~x1 i e!2F~x2 i e!#, ~A2!

PE
L

`dy

p

sst~y!/Ay

y2x
5

1

2
@F~x1 i e!1F~x2 i e!# ~A3!

for x.L, where e is the positive infinitesimal. Using Eq
~16!, the second equation can be written as

1

2i
@e(p/2)iF~x1 i e!2e2(p/2)iF~x2 i e!#

5mb
U08~x!

Ax
for x.L. ~A4!
-
-

ack

-
or

-

Now we define another complex functionX(z)
[1/AL2z with the branch cutz>L along the real axis and
choose the branch with

X~x1 i e!5
1

Ax2L
e(p/2)i , X~x2 i e!5

1

Ax2L
e2(p/2)i

~A5!

for x.L. Then, Eq.~A4! divided byAx2L can be expressed
as

1

2i
@X~x1 i e!F~x1 i e!2X~x2 i e!F~x2 i e!#

5mb
U08~x!

AxAx2L
for x.L. ~A6!

SinceX(z)F(z) is regular except forz>L along the real
axis, we obtain

X~z!F~z!5mbE
L

`dy

p

1

y2z

U08~y!

AyAy2L
1Q~z!, ~A7!

whereQ(z) is a function that is regular except forz>L and
continuous forz.L. With this expression and Eq.~A2!, we
have

sst~x!52mb PE
L

`dy

p

1

y2x
Ax

y
Ax2L

y2L
U08~y!

2Q~x!AxAx2L for x.L, ~A8!

but Q(x)50 becausesst(x) should be finite forx.L and
sst(x)→const (x→`).
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