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Self-healing pulse solution in a continuum model of fracture propagation
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An analytical solution that represents a self-healing pulse of slip is presented for a dynamical model of
fracture in a two-dimensional continuum medium. Even without the cohesive region, the solution does not
show a singular behavior in the stress at the resticking point unlike at the breaking point, where the stress is
diverging as 1r. This means that the physical condition at the resticking point should depend on the
microscopic processes of resticking while the condition at the breaking point is known to be described by the
phenomenological fracture energy.

PACS numbes): 46.50+a, 62.20.Mk, 91.30.Bi

It requires a large amount of work to slide a carpet on awherec, is the sound speed for the material,s the exter-
floor by pulling one of its sides because the friction force isnal displacement imposed at infinity-{), andwg is the
acting over the whole interface between the carpet and thangular frequency around it and represents the stiffness of
floor. But, if one makes a bump at one side and pushes the externally imposed displacement; in the lower half plane
through to the opposite side, the carpet can be shifted mucfy<0), we suppose that the external displacement is.
easier because only a small fraction of the carpet is movinghe crack is supposed to propagate alongxleis toward
at a given time and the friction force to the bump is small. Athe —x direction. We assume the anti-symmetric situation
more microscopic example that is familiar to physicists is afor the displacement about thex axis and consider only the
dislocation propagation; a crystal deforms by propagatingipper half plangFig. 1).
dislocations, thus it can be deformed much easier than it Suppose the crack tip is moving at the constant velocity
would be expected if all the bonds would have to be shifted—v and its position is—vt, then the boundary condition

at the same time. along thex axis is
It has been realized that a similar thing is happening in
much larger scale; An earthquake fault does not slip at once au c(x)  (x<—vt),
in a big event, but it slides as a localized pulse of fracture M@ y=0" oM (x)  (x>—vt), @

propagates along the fault, and the fault surfaces stick to-
gether after the fracture front has passed. From the analysis 0 (x<-ut),

of seismic data, it has been found that the length of slipping u(x,y= +o)=[ 3
region of the earthquake fault at a given moment within an Ux) (x>-ot),

event is much shorter than the total length of the fault broken +) ) _ .
by the earthquakEL]. Simulations of a simple block-spring Whereéa" (x) [a" (x)] is the stress along the axis for
model also show that fracture fronts propagate as a narro)~ ~ vt (y<—ut), andU(x) is half of the crack opening;
pulse in a big sliding everiB—5]. denotes the el_astlc modulu_s. _ _

On the other hand, theoretical study on fracture dynamics, FOF convenience we define the width of the distorted re-
is largely limited to the fracture without healing and little is 910N W, the strains.., and the stress.. at the center line at
known about physical and mathematical properties of th&= ~ by
pulse such as crack propagation with self-healing. There has
been found a solution for a pulse propagation in a two- =
dimensional continuurf2], but the solution is not a dynamic o W’
but a kinematic one in the sense that its dynamical features ) ] ]
such as the fracture speed and the pulse length are arbitrafy "epresents the stress imposed by the external distortion.
and cannot be determined for a given physical situation. In~ NOW we transform the coordinate system into the moving
this paper, | will solve a dynamical model of fracture propa-frame where the crack tip is located at the originxasvt
gation and present a pulse solution of the mode Il crack with
self-healing in a two-dimensional continuum.

The model | study here is the same with the one where the i
analytical solution without self-healing has been obtained
[6—8]. | consider only the out of plane componemtdom- /77777777
poneni of the displacement fieldi(x,y,t), which satisfies [/ ]]]]
the equation of motion

U(x,y,t) =c3V2u(x,y,t) — wlu(x,y,t) —A]  (y>0),
(1) FIG. 1. Mode Ill fracture in the 2D elastic medium.
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—X, and look for the stationary solution by replaciafpt o
—uvdldx, then the equation of motion for>0 becomes ¢
) v2 (92 (92 )
Col | 1— 2 X2 7y u(x,y) —wglu(x,y)—A]=0. S,
©)

The solution with the appropriate boundary condition can

be expressed 4$,7]
0 3 U

dk . L
= —_e YWy | () +ikx—K(k)y
uxy)=A(l-e ) J’ 27TU (kje © FIG. 2. Simple model of the cohesive stress.

with U()=s (13)

N 1
K(k)=B\a’+K?, =B B=\1-0v%cZ, (7p and

~ oy (0<x</),
whereU(™)(k) is the Fourier transform of)(x); the suffix gy(X)= 0 (/<x<L) (14)
(+) denotes that all the singularities 0 *)(k) are located ’
in the' upper half plane bepqub!e(x)zo for xfO. therefore Eq(8) becomes
This can be solved explicitly fdd (x) anda{~)(x). In the
a—0 limit, or the infinite system width limit, the solution 1 dy [x 1
can be expressed in the simple form in the real space repre- U’(x)=—Pf —\ﬁ — 0oy
sentation 9] pp Jo m Ny X=y
1 »dy [x 1
1 xdy\ﬁ 1 +—p _\/: i
()= —pP| 22— gD —os(Y). (15
U'(x) MﬁP i yx—ya (y) for (x>0), uB JL m Nyx—y
® Since the crack openingl(x) is constant in the resticking
«dy [—x 1 region, Eq.(15) becomes zero fox>L:
aH(x):Pf —\/— ——a(y) for (x<0) (9)
o y y—X 1 oody X 1
0=U{(X)+—P| —\/-———0agy) for (x>L),
in terms of the stress behind the crack &p"(x); P de- pwB Ju m Ny x=y
notes the Cauchy principal value of the integral. The condi- (16)
tion that the stress should not diverge at the crack tip is i )
shown to be where we have defined the crack openig(x) in the case
without resticking by
1 . e—aX
\/—_f de[aH(x)—ax]:o. (10) 1 f/dy x 1
0 UygX)=—P| —\/—
T X o(X) wB Jo yX—y Oy
Note that the expression for the general casg, is given -
for this. - Ve \/;‘ (17
Now we look for a self-healing pulse solution. We assume B \/7_ \/;‘ '

the crack surfaces restick a&L, then the stress behind the
crack tipa{™)(x) consists of two parts, namely, the slipping The singular integral equatioflé) can be solved for

stressog(x) for 0<x<L, and the resticking stress,(x) for o.(X) (see the Appendix and RefL0]) and then we obtain
L<x. We assume the free traction condition for the slipping;, expressions fou’ (x) and o(~)(x) from Egs.(15) and
stress except for the cohesive zone where the simple consta(@t) respectively

cohesive stress, operates within the cohesive ranggx)

<6 (Fig. 2 wdy 1 \ﬁ —
og(X)=aJU(x)] for (0<x<L) (11) o(X)=—uBP L7 y=x y\/yTLUO(y)

and for (x>L), (18

o, (0<U<S), =dy 1 [x [L—x
7W=10" u=s. (12 U'<x>=ua<x>—fL;y_—x\[yx/y_—Luaw)

If we denote the length of the cohesive regidnthen for (0<x<L), (19
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L ) § ] The total displacemer is given byU(L); in the //L
041 | ’ <1 case, from the expressi¢@3), we have
= 1
02 i
- : | o o ) ,
0.0 : — 5@ , (27)
10 - | E -
J and from Eq.(26), this can be shown to satisfy the relation
b r -
0.0 Do.=oy6=I. (28

o/ L
This equation simply represents that the elastic energy re-
FIG. 3. U(x) and o(x) vs x for the case//L=0.1. U(x) is  leased by the displacemebtequals to the fracture energy

given in the unit ofey /uB and o(x) in the unit ofo . which implies the solution represents the fracture propagat-
ing without emitting any sound.
(=)o — () =dy 1 There are some points that need comments about this so-
o (X)=0g (X)+up LT y=x lution.

(1) In the case of non-healing solution, the physical con-
-Xx [L—=x ditions to determine the parametersand 7 are the nondi-
Ny ﬁué()/) for (x<0), (200  vergence condition at the crack tip and the matching condi-
tion at the end of the cohesive zone. The former condition
whereo{)(x) is the stress for the case without resticking; reduces to the energy criterion by Griffith1], i.e., the crack
criterion given by the simple phenomenological parameter or
(=)o 2 . / the fracture energy.
o ((X)=_—oytan — for (x<0). (2] On the other hand, in the case of the self-healing pulse
solution, the solution contains the additional parameter, the
Numerical estimate of Eq$18)—(21) are given in Fig. 3 for pulse lengthL. The additional condition should come from
//L=0.1. When the size of the cohesive zone is muchhe resticking condition. Difference from the condition at the
smaller than the slipping regiom,/L<1, these equations breaking point is that the solution does not have a stress
can be approximated as divergence at the resticking point for anhy therefore we
cannot impose the nondivergence condition there to deter-

2 \/7 x—L mine it. This implies that the resticking condition cannot be
"st(x):(; [Uy) V— for x>L), (22} expressed by a simple macroscopic quantities like the frac-
ture energy, but depends upon microscopic quantities such as
resticking stress or critical slipping speed for resticking.
) for (/<x<L), (2) The solution is obtained in the—0 limit, or the
infinite system width limit, therefore the situation repre-
(23 sented by the present solution is that the total displace®ent
is much smaller than the externally imposed displacement
/ / only negligible part of the total stress is released by the slip.
tan™* \/ —_x+ \/ _—X(\/l—X/L_ 1)} In real earthquakes, it has been estimdtgdhat only rela-
tively small fraction ¢(~10%) of stress is released although
for (x<0). (24 there are substantial variations in the released stress from an

o s - . earthquake event to another. On the other hand, in the simu-
These coincide to the “kinematic” analysis of stress for the|ations for the spring-block system for the earthquake dy-

oy /
U'(x)=2——1\/—
auB V¥ X

x/L

B 1+V1-x/L

1

2
(D (x)=—
o' (X) 0y

self-healing crack by Freuna]. namics, the system overshoots in the big evéatss|. For
The solution contains the three unknown parameterss;ch cases, we need to solve Ed) for the nonzeroa,
namely,v, /, andL, and the one external paramei®%,  where the integral kernel in Eqg8) and(9) decay exponen-

which is directly related withA by Eq. (4). For the physical tjally for large|x—y|, but their actual form is not simple and

conditions to determine the parameters, we have the nondj-am unable to extract any compact results.

vergent condi_tion of stresd0) and the matching c/ondition (3) The present solution reduces to Freund’s [&2jén the

for the cohesive zone at the crack (3). In the //L<1 /| <1 limit as is shown in Eqs(22)—(24), but the differ-

case, these conditions give ence between the present treatment and Freund's is that we

. define the model as a dynamical one in the sense that the

g E f /= ™ i 2 dynamical features can be determined for a given external

N =38k (25)

oy’ physical conditiony, //, andL can be calculated as a func-

—=
y
) tion of o, if a resticking condition is given. On the other
from which we have hand, in Freund’s treatment, simply a kinematic solution is
given for arbitrary values of parametersL, ando., , there-
2 1 ; )
L=—0,Budé—. (26)  fore the dynamical parameters cannot be determined for a
T

o given physical situation.
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In summary, | obtained the analytic solution for the self- Now we define another complex functiorX(z)
healing pulse of the crack propagation for the simple dy-=1/\/L —z with the branch cuz=L along the real axis and
namical model of fracture in a two-dimensional continuumchoose the branch with
in the infinite width limit. In order to suppress the divergence
in the stress, the model needs the cohesive zone at the crack
tip, but not at the resticking point. This implies the fracture

O . X X R (wl2)i - —(wl2)i
speed of the solution is determined by the microscopic pa- X(x+ie)= x—Le  X(x—ie)= L e
rameters of resticking condition, such as resticking stress or (A5)
critical slipping speed for resticking.
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APPENDIX E[X(x+ie)d)(x+ie)—X(x—ie)db(x—ie)]
| present the derivation of E¢18) from Eq. (16) in this UL(x)
appendix. Let us start by introducing the complex function = up 0 for x>L. (A6)

() NNy

~d /
®(2)= f YodVIY W’ (A1) SinceX(2)®(2) is regul for=L along the real
LT Yy—z gular except for=L along the rea

axis, we obtain

which is regular except foe=L along the real axis if the

integral converges. Then we have ,
=dy 1 Uo(y)

X(2)P(2)=pB | — —— —=—=—=1Q(2), (A7)
o X 1 _
S}) =5 [P(x+ie)=D(x—ie)], (A2) Lm Y=z \yy-L
X
=dy o [(y)/\/§ 1 whereQ(z) is a function that is regular except faeL and
Pj — S—:—[q)(X+iE)+q)(X— ie)] (A3) continuous forz>L. With this expression and E¢A2), we
LTooymx 2 have
for x>L, where € is the positive infinitesimal. Using Eq.
(16), the second equation can be written as =dy 1 \ﬁ X—L
og(X)=— P[ ———\/-\/—Uj|
. s0==pBP| — = \J VYo
" ra(#2)i F oy e (m2)i i
e D(X+i e D(x—ie
2l (x+1e) (x=ie)] —Q(X)X\X—L for x>L, (A8)
Uo(X) -
=upB for x>L. (Ad) but Q(x) =0 becauserg(x) should be finite fox>L and
\/; og(X)—const k— o).
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